
www.manaraa.com

Architecture and Implementation of Distributed Data
Storage using Web Services, CORBA and PVM

�

Pawel Czarnul

Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology, Poland,

pczarnul@eti.pg.gda.pl, http://fox.eti.pg.gda.pl/ � pczarnul

Abstract. We propose an architecture and its implementation called PVMWeb-
Cluster I/O targeted for distributed data storage and retrieval. Data is submitted
via Web services from geographically distant clients or via CORBA from within
clusters which offers better performance. The system consists of many, possi-
bly geographically distributed clusters which run DAMPVM/PVM. Each cluster
has a manager waiting for CORBA read/write calls which are passed to partic-
ular nodes in the cluster via PVM messages. Each cluster has a corresponding
Web service that passes read/write calls to the CORBA manager. Web services
form a top layer of PVMWebCluster I/O and call each other to obtain the best
cluster/node to store a particular chunk of data. This results in a very flexible ar-
chitecture which integrates distributed clusters for data storage of small and large
files. The architecture proposes caching at both Web service and cluster layers.
We have tested an initial implementation by submission of files of varying sizes in
four configurations: via the Web service and CORBA layers on a local machine,
via Web services in a LAN and via Web services through the Internet.

1 Introduction

In recent years, the need for parallel and distributed computing has increased signifi-
cantly. This refers to both high performance computing within tightly coupled clusters
using MPI and PVM ([1]), grid architectures ([2]) and Internet based multi-tier tech-
nologies ([3]) like J2EE, servlets, JSP etc. As high performance computing processes
huge amounts of data, efficient means of handling it is necessary. We present the evolu-
tion from high performance parallel file server based architectures to highly distributed
Web based data storage in XML. The proposed PVMWebCluster I/O uses Web services
([4]) and CORBA ([5]) as interfaces and PVM ([1]) within clusters.

2 Related Work

There are many systems in the literature targeted for parallel and distributed data stor-
age/retrieval. However, they seem to be solutions either too focused on tightly coupled
parallel computations like implementations of MPI-I/O ([6]) or are very general like:

�
work partially sponsored by the Polish National Grant KBN No. 4 T11C 005 25



www.manaraa.com

WWW-based systems like Metacat ([7]) or OceanStore ([8]) or grid systems like EU-
DataGrid ([9]) based on Globus ([10]) or GridLab ([11]). The latter ones are general so-
lutions which integrate remote job control, data management and several other services.
The proposed PVMWebCluster I/O is a dedicated solution for a collection of distributed
PVM-based clusters so specific solutions like submission from within a cluster can be
optimized considerably using the loads by other user processes, dynamic requirements
reported by DAMPVM processes etc.

Network file systems like NFS or AFS ([12]) are easy to use within clusters as
they support one uniform file tree for all the applications. However, integration of such
systems in various clusters is not easy and requires additional tools.

MPI-I/O ([6]) is a set of parallel access operations to files defined within MPI-2 and
thus limited to MPI. There are systems which support interoperability and file controlled
sharing for applications running on different Massively Parallel Processors (MPPs).
This enables different MPI vendor implementations to interoperate like in MPI Connect
([13]). MPI Conn IO API allows file access from parallel applications running on dif-
ferent parallel computers. MPI Conn IO API is used to open a file globally and split it
across the parallel sites, then possibly open it using the MPI-2 MPI File open() and up-
date it. [14] proposes Stampi-I/O – a distributed parallel I/O library, an implementation
of MPI-I/O that supports parallel file read/write operations. Another similar system is
PACX-MPI PIO ([13]) in which many clients can access many parallel file servers. PI-
OUS ([15]) is a similar system for PVM which implements a virtual file system within
a PVM environment and thus is a parallel not a distributed system by our definition.

The following systems support distributed file storage but their architectures do not
seem to offer any specific optimization possibilities for PVM clusters with changeable
loads and shared by many users at the same time as in the case of PVMWebCluster
I/O. [16] presents the architecture of WebFS – a cache coherent distributed file system
for unmodified applications which uses global HTTP naming to write and retrieve files.
UFO ([17]) is another user level implementation of a distributed file system in which
remote files can be treated as if they were local and are accessed using FTP or HTTP.

The following two systems are again too general and high-level in their architec-
tures to be used efficiently in HPC applications on a collection of PVM-based clusters.
As an example, OceanStore ([8]) has been developed with thousands of users and ter-
abytes or more of data in mind. It is highly dispersed across the Internet and consists
of distributed pools of storage systems each of which consists of particular servers. [7]
presents Metacat – a framework for distributed data storage that is physically distributed
across the Internet, possibly heterogeneous with respect to data format. Data is stored
in XML in SQL-compliant relational databases.

Regarding the latest developments, there are grid-based systems like EU-DataGrid
([9]) and GridLab ([11]). However, since the specifications focus rather on the require-
ments, APIs, portability and ease of integration of various systems, there is no specific
mention of PVM/MPI optimizations as the systems focus on high-level distributed job
control of large applications instead. The Global Access to Secondary Storage system
(GASS, [18]), a part of the Globus toolkit ([10]) used in grid-based systems, is a data
access and movement service that uses URLs to implement a global file space. GASS
provides cache techniques for read and write operations.



www.manaraa.com

3 PVMWebCluster I/O Architecture

PVMWebCluster I/O is based on the three-tier PVMWebCluster architecture which cor-
responds to the following three layers in PVMWebCluster I/O:

1. Web Service Data Submission Layer (WSDSL) – a geographically distributed PVM-
WebCluster system is composed of particular clusters each of which has a corre-
sponding Web Service interface. Web Services representing separate clusters call
each other to determine the best cluster to store a particular chunk of data.

2. Cluster Data Submission Layer (CDSL) – each cluster has a CORBA represen-
tative that intermediates incoming data submission calls to the cluster as well as
returns information such as: available storage space, processor speeds, internode
latency and bandwidth, number of active processes on particular nodes etc. This in-
formation can be used by the WSDSL to make a decision in which cluster to store
a particular chunk of data. The cluster manager listens to CORBA calls and uses
PVM communication to store the data on one of the available nodes in the cluster.
The CDSL has a database of files submitted to it. Such submission is faster but data
can be partitioned and spread using only the cluster nodes. On the other hand, using
the WSDSL, data can be replicated and stored on physically distant clusters in case
one cluster is damaged.

3. Cluster Layer (CL) – finally a chunk of data is stored on a certain node in the cluster.
The data is submitted from the CDSL, currently implemented as PVM messages.

The proposed system architecture of PVMWebCluster with distributed file storage
PVMWebCluster I/O is presented in Figure 1. We distinguish the following data sub-
mission modes for both distributed and sequential processing:

1. Large data submission through Web Services – used to store large amounts of data
which does not require frequent and fast access:

– this solution involves large latency both when data is submitted and retrieved,
– allows really large data capacity as the system architecture includes a set of

clusters each of which consists of many nodes equipped with disks.
2. Storage for high performance computing within clusters – reasonably small amounts

of data which is to be accessed reasonably frequently. In the initial implementa-
tion, we assumed that in this submission mode files would not need partitioning.
However, it may be useful to replicate files across the nodes in the cluster so that
processes can access them in parallel.

4 Data Access Patterns, Submission and Partitioning in
PVMWebCluster I/O

WebFS implements three cache coherence policies:

1. Last writer wins – a server keeps a listing of all sites caching the given file. If it has
been updated by one of them, invalidation notifications are sent to the others. This
makes this policy reasonable for occasional updates rather than frequent updates of
many files.



www.manaraa.com

2. Append only – writes append information to files and can be simply forwarded to
other servers and receivers.

3. Multicast – all updates are sent to all clients. One dedicated channel is used to
distribute invalidation (update) notifications while another one for sending updates.

In GASS ([18]), common access patterns have been distinguished and implemented to
achieve low latency access to files as well as high bandwidth. They include: read-only,
last writer wins, append-only and unrestricted access to remove the need for parallel
call synchronization.

PVMWebCluster I/O is more about distributed file storage i.e. file partitioning and
distribution rather than multi-user access. In PVMWebCluster I/O, we assume that a file
is generally used by the user who has written it. However, extensions are possible in the
future thanks to the flexible architecture. As in OceanStore ([8]), we assume that any
update of a file is a new version of it and is stored as a new file. It essentially eliminates
the need for concurrent write control for files. The URL global space is naturally used
as the implementation is based on Web services. There is a dedicated directory for data
storage on each node.

AXIS Web Services

Tomcat + Apache WWW Server 
MySQL
Server

Node 1

DAMPVM
kernel

Application
Node 2

DAMPVM
kernel

Application

Node 0

DAMPVM
kernel

Application

1: StoreData(data,
filename,criterion)

AXIS Web Services

Tomcat + Apache WWW Server 
MySQL
Server

Cluster Manager (CORBA) MySQL
ServerCluster Data Submission Layer

Web Service CORBA PVM

2: PartitionData()

3: URL=FindBestCluster(
sourceURL,criterion)

data submission
to the WSDSL

6: StoreData(data,filename)

PVM node
monitoring

data 
submission
to the CDSL

CacheData()

CacheData()

CacheData()

User
App

4: StoreDataOnThisCluster(data,filename)
CLUSTER B

WSDSL

1': StoreData(data,
filename,criterion)
User
App

WSDSL
5: StoreData(data,filename)

CDSL

CL

CLUSTER A

Fig. 1: PVMWebCluster I/O Architecture



www.manaraa.com

The write submission requests to both the WSDSL and the CDSL are shown in Figure
1. For the WSDSL the steps are as follows:

1. A write call is invoked in the client code. Assuming the storage of data in a string,
the client code invokes Web service public static String StoreData
(String sData, String sFileName, int nCriterion). The data is dis-
tributed among the available clusters. The information about all the blocks, their
numbers and locations is stored in a MySQL database. In the experiments, single
data submissions were not partitioned across nodes. In this case, the Web service
returns the URL of the final Web service, the node within the cluster where the data
has been saved and the available free space (in KBs) on this node (<BestService
URL>>><BestNodeName>>><result> e.g. wolf.eti.pg.gda.pl>>wolf>>
10773.836). The criterion given as an argument determines the algorithm used.
The advantage of the Web Service technology is the simplicity of the client code.

2. The Web service decides whether the data size is too large and thus should be parti-
tioned into chunks. If this is the case, the data is partitioned by method Partition
Data(). Then the following operations are executed on the chunks in parallel.

3. For a data chunk, invoke method public static String FindBestCluster
(String sSourceServiceURL, int nCriterion)which finds the best (with
respect to the criterion set, in this case FILE STORAGE AVAILABLE MAXIMIZA-
TION CRITERION since we are looking for maximum available disk space) cluster
in the subgraph of the system. The clusters being called memorize the URL and
the parameters of the best Web service/node found so far. The source URL is given
in order not to call it back recursively. The cluster which returns the maximum
available storage space is assigned the data. On every cluster method FindBest-
Cluster() invokes method GetClusterMaxFreeFileStorageSpace()which
returns the file storage (corresponding to the node with the maximum free space in
the cluster). This method uses the available storage space for every node within the
cluster that is cached at the WSDSL layer. It is gathered by another thread work-
ing concurrently which makes CORBA calls to the CDSL layer cluster manager in
parallel.

4. Invoke Web service public static String StoreDataOnThisCluster
(String sData, String sFileName) which passes the data to the optimal
cluster selected in the previous step.

5. On the final cluster, a call is made to the StoreData() CORBA method in the
CDSL layer cluster manager. Its Interoperable Object Reference (IOR) is fetched
from a file written to the disk during the initialization of the server. The file name
and the data are passed. This layer can also be called by an application from within
the cluster via CORBA (1’. in Figure 1).

6. Finally the CORBA manager stores the data on the best node in the cluster i.e. the
node with maximum available free storage space for the aforementioned criterion
and sends the data via PVM messages.

Figure 1 shows the cache procedures (currently being implemented) at the WSDSL and
CDSL levels. Subsequent read operations can use the cached data. The cache at the
CDSL level can contain more information than the WSDSL cache as some files may
have been submitted to the cluster manager via CORBA calls from within the cluster.



www.manaraa.com

5 Implementation and Experimental Results

Entry points to clusters have been implemented as Web services in Java with the AXIS
server (published as .jws files, [4]) running in the Tomcat application server ([19]).
AXIS is a SOAP engine and Tomcat runs on the Apache WWW server. The architecture
allows PVM clusters running on different user accounts.

We have implemented read and write operations through Web services (imple-
mented in Java) and then via CORBA calls to particular clusters. Cluster managers (im-
plemented in C++) monitor performance parameters including available storage space
from all the nodes in the clusters they are in charge of. This is done by DAMPVM
kernels ([20], [21], [22]), previously developed by the author. They use PVM commu-
nication and OS system calls. The following four configurations were tested:

CORBA – local machine – data is written to a local machine via a CORBA call. A
Pentium 4-M 1.4GHz workstation running Redhat Linux 8.0, kernel 2.4.18-18.

Web service – local machine – data is written to a local machine through a Web ser-
vice (the WSDSL level). The WSDSL layer contacts the cluster manager at the
CDSL level which writes the data in the cluster. Same configuration as above.

Web service – through LAN – data is written to a machine in a local network through
a Web service (the WSDSL level) which invokes Web services on other nodes to
determine the cluster with the largest available storage space. Then a Web service
is invoked on the chosen cluster which contacts the cluster manager at the CDSL
level which writes the data in the cluster. Pentium 4-M 1.4GHz and Athlon XPs
1800+ workstations running Redhat Linux 8.0, kernel 2.4.18-18, 10Mbps Ethernet.

Web service – through Internet – data is written to a distant machine through the In-
ternet via a Web service (the WSDSL level). The communication is done as in the
previous configuration with the exception of much larger latency and lower band-
width through the Internet. Same configuration as above through the Internet (one
node connected to the Internet via a shared 115kbps SDI connection).

0

2

4

6

8

10

12

0 300000 600000 900000 1.2e+06
Data Size [bytes]

Data Submission Time [s]

CORBA - local machine
Web service - local machine
Web service - through LAN

Web service - through Internet

Fig. 2: Write Times with Client Overhead

0

2

4

6

8

10

12

0 300000 600000 900000 1.2e+06
Data Size [bytes]

Data Submission Time [s]

CORBA - local machine
Web service - local machine
Web service - through LAN

Web service - through Internet

Fig. 3: Write Times without Client Overhead

It is must be noted that data was submitted through Java clients that read it and
passed to the WSDSL or CDSL layers respectively. Figures 2 and 3 show the obtained



www.manaraa.com

results for submission of files of the following sizes: 30, 300, 3000, 300000, 600000 and
1200000 bytes. Figure 2 shows the times of single write calls via the client in which
case we must account for the client initialization as well. This corresponds to occasional
write calls when the initialization overhead is significant. The results are averaged from
10 write calls. Figure 3 shows the write times of successive write calls after the client
has already been initialized and the first call is already finished. The results are aver-
aged from 100 subsequent calls without client initialization. This corresponds to many
subsequent submissions for which the initialization overhead can be neglected.

Figure 2 shows that the overhead for invoking a client and thus the initialization
of necessary Web service and CORBA components is considerable, even for small 30-
byte files. We also conclude that this initial overhead is much smaller when data is
submitted within the cluster through the CORBA manager than through Web services.
Additionally, Figure 3 shows that the Web service implementation puts a limit on the
bandwidth even on a local machine compared to the CORBA communication. However,
it is also shown that in practice this may not be a determining factor as the low Internet
bandwidth is the bottleneck for distributed data submission.

6 Summary and Future Work

We have proposed and implemented a system for distributed data storage and retrieval
based on Web services as the top layer, CORBA as middleware and PVM inside clus-
ters. The performance of the implementation for files of varying sizes have been as-
sessed for submissions via both the Web service and CORBA layers. Although the sys-
tem is fully functional and complements PVMWebCluster in distributed task execution
and management, there are many features to be implemented in PVMWebCluster I/O:

– various partitioning and caching techniques for very large files to be stored, tuning
parameters and performance measurement for large networks,

– data encryption and decryption for distributed data storage in open environments,
– integration with the PVMWebCluster user management,
– data replication and migration to increase bandwidth,
– node/cluster/network failure handling.

References

1. Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications Using Net-
worked Workstations and Parallel Computers. Prentice Hall (1999)

2. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations. International Journal of High Performance Computing Applications 15
(2001) 200–222 http://www.globus.org/research/papers/anatomy.pdf.

3. Noack, J., Mehmaneche, H., Mehmaneche, H., Zendler, A.: Architectural Patterns for
Web Applications. In Hamza, M., ed.: 18th IASTED International Conference on Ap-
plied Informatics (AI 2000), Proceedings, Innsbruck, Austria, ACTA Press (2000) cite-
seer.nj.nec.com/260788.html.

4. Streicher, M.: Creating Web Services with AXIS: Apache’s Latest SOAP Imple-
mentation Bootstraps Web Services. Linux Magazine (2002) http://www.linux-
mag.com/2002-08/axis 01.html.



www.manaraa.com

5. Buyya, R., ed.: High Performance Cluster Computing, Programming and Applications. Pren-
tice Hall (1999)

6. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing Interface Stan-
dard. (1997)

7. Jones, M., Berkley, C., Bojilova, J., Schildhauer, M.: Managing Scientific Metadata. IEEE
Internet Computing 5 (2001) 59–68

8. Rhea, S., Wells, C., Eaton, P., Geels, D., Zhao, B., Weatherspoon, H., Kubiatowicz, J.:
Maintenance-Free Global Data Storage. IEEE Internet Computing 5 (2001) 40–49

9. EU-DataGrid (EDG): The DataGrid Project (2003) http://eu-datagrid.web.cern
.ch/eu-datagrid.

10. Globus: Fundamental Technologies Needed to Build Computational Grids (2003)
http://www.globus.org.

11. GridLab: A Grid Application Toolkit and Testbed (2003) http://www.gridlab.org.
12. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems – Concepts and Design.

Addison-Wesley (2001)
13. Fagg, G.E., Gabriel, E., Resch, M., Dongarra, J.J.: Parallel IO Support for Meta-computing

Applications: MPI Connect IO Applied to PACX-MPI. In: Recent Advances in Parallel
Virtual Machine and Message Passing Interface. Number 2131 in Lecture Notes in Computer
Science, Springer-Verlag (2001) 135–147 8th European PVM/MPI Users’ Group Meeting,
Santorini/Thera, Greece, September 23-26, 2001, Proceedings.

14. Tsujita, Y., Imamura, T., Takemiya, H., Yamagishi, N.: Stampi-I/O: A Flexible Parallel-
I/O Library for Heterogeneous Computing Environment. In: Recent Advances in Parallel
Virtual Machine and Message Passing Interface. Number 2474 in Lecture Notes in Computer
Science, Springer-Verlag (2002) 288–295 9th European PVM/MPI Users’ Group Meeting,
Linz, Austria, September/October, 2002, Proceedings.

15. Sunderam, V., Moyer, S.: PIOUS for PVM (1995) http://www.mathcs.emory.
edu/pious.

16. Vahdat, A.M., Eastham, P.C., Anderson, T.E.: WebFS: A Global Cache Coherent File Sys-
tem. Technical report, Computer Science Division, University of California Berkeley (1996)
http://www.cs.duke.edu/ � vahdat/webfs/webfs.html.

17. Alexandrov, A.D., Ibel, M., Schauser, K.E., Scheiman, C.J.: Extending the Operating System
at the User Level: the Ufo Global File System. In: Proceedings of the USENIX Annual
Technical Conference, Anaheim, California, USA (1997) 77–90

18. Bester, J., Foster, I., Kesselman, C., Tedesco, J., Tuecke, S.: GASS: A Data Movement and
Access Service for Wide Area Computing Systems. In: Proceedings of the Sixth Workshop
on Input/Output in Parallel and Distributed Systems, Atlanta, GA, ACM Press (1999) 78–88

19. McClanahan, C.R.: Tomcat: Application Developer’s Guide. (2002) Apache Jakarta Project,
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/appdev/index.
html.

20. Czarnul, P.: Programming, Tuning and Automatic Parallelization of Irregular Divide-and-
Conquer Applications in DAMPVM/DAC. International Journal of High Performance Com-
puting Applications 17 (2003) 77–93

21. Czarnul, P., Tomko, K., Krawczyk, H.: Dynamic Partitioning of the Divide-and-Conquer
Scheme with Migration in PVM Environment. In: Recent Advances in Parallel Virtual
Machine and Message Passing Interface. Number 2131 in Lecture Notes in Computer Sci-
ence, Springer-Verlag (2001) 174–182 8th European PVM/MPI Users’ Group Meeting, San-
torini/Thera, Greece, September 23-26, 2001, Proceedings.

22. Czarnul, P., Krawczyk, H.: Dynamic Assignment with Process Migration in Distributed En-
vironments. In: Recent Advances in Parallel Virtual Machine and Message Passing Interface.
Number 1697 in Lecture Notes in Computer Science (1999) 509–516


